Scientists develop new form of light

Scientists have developed a way to bind photons to individual electrons, allowing for a new type of light that has properties of both elementary particles.

|
Vincenzo Giannini
An artist's rendering of light trapped on the surface of a nanoparticle topological insulator.

Could a Frankenstein particle change quantum research for the better?

Physicists have described a new form of light produced by binding photons to single electrons. According to their study, published Friday in Nature Communications, the mashed-up particles could be used in new photonic circuits and allow the study of quantum phenomena on the visible scale.

“The results of this research will have a huge impact on the way we conceive light,” said lead author Vincenzo Giannini in a statement.

Photons are the basic particle component of light. When these particles come in contact with a material, they interact with numerous electrons on the material’s surface. Dr. Giannini, who lectures at Imperial College London’s physics department, sought to study the interaction of photons with a "recently discovered" class of materials called topological insulators.

Giannini’s team of physicists and material scientists developed digital models that would predict the interaction. Their models, which were based on a single nanoparticle made of a topological insulator, showed that light could interact with just one surface electron.

By coupling the two particles, researchers could combine certain properties of both. Light normally travels in a straight line, but when bound to a single electron, it could follow the electron’s path along a material surface. And, while electrons usually stop when they encounter a poor conductor, the addition of photons would allow the coupled particle to continue moving.

Photonic circuits can be used to power quantum simulators or applied to solid-state quantum memory systems, which are an essential component in quantum computers. Researchers say the coupled particle could improve the durability of photonic circuits, making them less susceptible to "disruption and physical imperfections."

Usually, quantum phenomena – such as superposition, wherein particles exist in two different states simultaneously – can be observed only  in extremely small particles or in objects that have been supercooled. But a combined photon-electron could allow researchers to study these effects on the visible scale and at room temperature.

It should be possible to replicate the models using current technology, researchers say. To that end, Giannini and colleagues are working with experimental physicists to observe the coupling in a realtime experiment.

“Topological insulators were only discovered in the last decade,” Giannini says, “but are already providing us with new phenomena to study and new ways to explore important concepts in physics.”

You've read  of  free articles. Subscribe to continue.
Real news can be honest, hopeful, credible, constructive.
What is the Monitor difference? Tackling the tough headlines – with humanity. Listening to sources – with respect. Seeing the story that others are missing by reporting what so often gets overlooked: the values that connect us. That’s Monitor reporting – news that changes how you see the world.

Dear Reader,

About a year ago, I happened upon this statement about the Monitor in the Harvard Business Review – under the charming heading of “do things that don’t interest you”:

“Many things that end up” being meaningful, writes social scientist Joseph Grenny, “have come from conference workshops, articles, or online videos that began as a chore and ended with an insight. My work in Kenya, for example, was heavily influenced by a Christian Science Monitor article I had forced myself to read 10 years earlier. Sometimes, we call things ‘boring’ simply because they lie outside the box we are currently in.”

If you were to come up with a punchline to a joke about the Monitor, that would probably be it. We’re seen as being global, fair, insightful, and perhaps a bit too earnest. We’re the bran muffin of journalism.

But you know what? We change lives. And I’m going to argue that we change lives precisely because we force open that too-small box that most human beings think they live in.

The Monitor is a peculiar little publication that’s hard for the world to figure out. We’re run by a church, but we’re not only for church members and we’re not about converting people. We’re known as being fair even as the world becomes as polarized as at any time since the newspaper’s founding in 1908.

We have a mission beyond circulation, we want to bridge divides. We’re about kicking down the door of thought everywhere and saying, “You are bigger and more capable than you realize. And we can prove it.”

If you’re looking for bran muffin journalism, you can subscribe to the Monitor for $15. You’ll get the Monitor Weekly magazine, the Monitor Daily email, and unlimited access to CSMonitor.com.

QR Code to Scientists develop new form of light
Read this article in
https://www.csmonitor.com/Science/2016/0807/Scientists-develop-new-form-of-light
QR Code to Subscription page
Start your subscription today
https://www.csmonitor.com/subscribe