DNA origami rendition of 'Starry Night': Why does it matter?

Using folded DNA strands, scientists produced a fluorescent copy of Van Gogh’s famous painting.

|
Courtesy of Ashwin Gopinath/Caltech
This glowing reproduction of 'The Starry Night' contains 65,536 pixels and is the width of a dime across.

Art plays an important, sometimes central, role in many human cultures. You could even say it’s in our DNA.

At the intersection of art and science, researchers from the California Institute of Technology recreated Vincent Van Gogh’s ‘Starry Night’ using folded DNA. This fluorescent rendition of the famous work, described Monday in the journal Nature, was made possible by ‘DNA origami’ – a technique that could someday power quantum computers.

DNA origami is the process of folding and manipulating long strands of DNA. By combining these folded strands into a latticed network, scientists can create a kind of “pegboard” to organize extremely small molecules. Paul Rothemund, a research professor at Caltech, developed the technique in 2006.

"It all happens in a test tube without human intervention,” Dr. Rothemund said in a press release, “which is important because all of the parts are too small to manipulate efficiently, and we want to make billions of devices."

The next step was to link these nanoscopic devices together. Early attempts consisted mostly of “spray and pray” – researchers would scatter the material on a surface in hopes that some pieces would land in the right spot. In 2009, Rothemund’s team described a new technique that used focused electron beams to carve custom binding sites into surfaces. From there, each folded DNA strand would fit neatly into its corresponding slot.

“It’s not easy to manipulate certain molecules,” lead author Ashwin Gopinath says in an interview with The Christian Science Monitor. “But you can stick it to something big, and if you know it’s connected to this huge thing, you won’t lose it. The beauty of [DNA] origami is that it’s big enough to produce scalably, but within the origami you can identify every single point.”

Rothemund and colleagues’ recreation of "Starry Night" is the first application of this technology. As a kind of proof-of-concept, researchers mapped out a checkerboard pattern using DNA origami and filled them with photonic crystal cavities (PCCs). These nanostructures trap certain wavelengths of light – the size and shape of each cavity corresponds to different colors and brightnesses. So by carefully selecting and integrating different DNA folds and PCC shapes, Dr. Gopinath and colleagues were able to create a hot-and-cold monochrome copy of Van Gogh’s most famous painting.

The end result is both aesthetically and structurally impressive. Deeper still, researchers say their device represents another step toward a fully-functioning quantum computer.

Academic and military institutions have aggressively researched quantum computers, which use quantum-mechanical phenomena to process data. These devices would be able to comb through unfathomable amounts of data in significantly less time than current technology allows, aiding government agencies in message decryption and allowing scientists to conduct virtual experiments. Of course, existing quantum computers don’t operate at full capacity, nor can they be mass-produced.

One method of quantum computing, called linear optical quantum computing (LOQC), is powered by a network of tiny light sources called emitters. Each emitter must produce exactly one photon at a time, and each must be identical to the others, and it must be able to do so at very well-defined time intervals.

There are many barriers to this paradigm. An ideal light source has yet to be developed, and LOQC circuits must be built one at a time. But new research could solve the problem of efficient production.

“Currently, we don’t have techniques to place single emitters exactly where we want to,” Gopinath says. “If we had an ideal light source, this technique could put it scalably where we want.”

In other words, while DNA origami can’t produce viable quantum emitters, it could potentially organize them. Until then, Gopinath and colleagues will seek new experimental emitters and ways to control their direction. But quantum computing is a complex and contentious field, and Gopinath is quick to make note of that.

“There are other competing approaches to quantum computing, and everyone says theirs is the best,” Gopinath laughs. “I’m not even going to go there and say that mine is the best.”

You've read  of  free articles. Subscribe to continue.
Real news can be honest, hopeful, credible, constructive.
What is the Monitor difference? Tackling the tough headlines – with humanity. Listening to sources – with respect. Seeing the story that others are missing by reporting what so often gets overlooked: the values that connect us. That’s Monitor reporting – news that changes how you see the world.

Dear Reader,

About a year ago, I happened upon this statement about the Monitor in the Harvard Business Review – under the charming heading of “do things that don’t interest you”:

“Many things that end up” being meaningful, writes social scientist Joseph Grenny, “have come from conference workshops, articles, or online videos that began as a chore and ended with an insight. My work in Kenya, for example, was heavily influenced by a Christian Science Monitor article I had forced myself to read 10 years earlier. Sometimes, we call things ‘boring’ simply because they lie outside the box we are currently in.”

If you were to come up with a punchline to a joke about the Monitor, that would probably be it. We’re seen as being global, fair, insightful, and perhaps a bit too earnest. We’re the bran muffin of journalism.

But you know what? We change lives. And I’m going to argue that we change lives precisely because we force open that too-small box that most human beings think they live in.

The Monitor is a peculiar little publication that’s hard for the world to figure out. We’re run by a church, but we’re not only for church members and we’re not about converting people. We’re known as being fair even as the world becomes as polarized as at any time since the newspaper’s founding in 1908.

We have a mission beyond circulation, we want to bridge divides. We’re about kicking down the door of thought everywhere and saying, “You are bigger and more capable than you realize. And we can prove it.”

If you’re looking for bran muffin journalism, you can subscribe to the Monitor for $15. You’ll get the Monitor Weekly magazine, the Monitor Daily email, and unlimited access to CSMonitor.com.

QR Code to DNA origami rendition of 'Starry Night': Why does it matter?
Read this article in
https://www.csmonitor.com/Science/2016/0714/DNA-origami-rendition-of-Starry-Night-Why-does-it-matter
QR Code to Subscription page
Start your subscription today
https://www.csmonitor.com/subscribe