Cosmic jack-o'-lantern: NASA discovers giant 'pumpkin stars'

Using data from NASA’s Kepler and Swift survey missions, astronomers have discovered a group of fast-spinning, X-ray slinging, orange giants.

|
Courtesy of Francis Reddy/NASA's Goddard Space Flight Center
KSw 71, the most extreme 'pumpkin star' found by NASA's Kepler and Swift missions, is larger than the sun and rotates four times faster. Both stars are shown to scale in this artist's concept.

Move over, Charlie Brown: NASA has found its own Great Pumpkin, and it’s quite a bit greater.

Using data from NASA’s Kepler and Swift survey missions, astronomers have discovered a group of fast-spinning, X-ray slinging orange giants. These “pumpkin stars,” so-named for their squashed appearance, may have been created by the merging of two sun-like stars in close binary systems. In other words, two closely orbiting stars appear to reach out and clasp hands like ice skaters in an accelerating spin.

“These 18 stars rotate in just a few days on average, while the sun takes nearly a month,” Steve Howell, lead author and senior scientist at NASA’s Ames Research Center, said in a statement. “The rapid rotation amplifies the same kind of activity we see on the sun, such as sunspots and solar flares, and essentially sends it into overdrive.”

Stars in this particular group produce X-rays at more than 100 times the sun’s peak rate. The “most extreme” member, a K-type orange giant named KSw 71, emits 4,000 times more X-rays than the sun does at its solar maximum. A study detailing this cosmic pumpkin patch was published in the Astrophysical Journal on Monday.

Researchers used Kepler data to determine the sizes and rotation periods of 10 such pumpkin stars. Though relatively similar to our sun in terms of surface temperature, these orange masses were 3 to 10 times larger.

All were giants or subgiants, advanced stages of stellar evolution caused by the depletion of hydrogen fuel. Main-sequence stars, which are generally powered by nuclear fusion, grow large as fused hydrogen atoms build up around the core.

Researchers say their findings may support the work of astronomer Ronald Webbink. In close binary systems, which include two sun-like stars in close proximity, the growth of one star into a giant would theoretically destroy the other.

About four decades ago, Dr. Webbink suggested that these stars would instead merge to form a single, fast-spinning giant. For a while, the new star would be enclosed in an “excretion disk” of expelled gas. That disk would disperse over about 100 million years, revealing an active star.

“Webbink's model suggests we should find about 160 of these stars in the entire Kepler field,” co-author Elena Mason, a researcher at the Italian National Institute for Astrophysics Astronomical Observatory of Trieste, said in a statement. “What we have found is in line with theoretical expectations when we account for the small portion of the field we observed with Swift.”

It’s not the first time our cosmos has shown its Halloween spirit. In 2015, as young goblins went door-to-door in search of candy, an asteroid passed overhead. But it wasn’t just any asteroid – it was a dead comet, and it looked eerily like a skull.

SPACE.com’s Calla Cofield reported:

[The] asteroid 2015 TB145 passed by Earth at a range of just over 300,000 miles (480,000 kilometers), placing it just outside the orbit of the moon, where it posed no threat to the planet. The timing of the flyby earned the asteroid – which is about 2,000 feet (600 meters) across – the nickname “Spooky” and “Great Pumpkin.”

You've read  of  free articles. Subscribe to continue.
Real news can be honest, hopeful, credible, constructive.
What is the Monitor difference? Tackling the tough headlines – with humanity. Listening to sources – with respect. Seeing the story that others are missing by reporting what so often gets overlooked: the values that connect us. That’s Monitor reporting – news that changes how you see the world.

Dear Reader,

About a year ago, I happened upon this statement about the Monitor in the Harvard Business Review – under the charming heading of “do things that don’t interest you”:

“Many things that end up” being meaningful, writes social scientist Joseph Grenny, “have come from conference workshops, articles, or online videos that began as a chore and ended with an insight. My work in Kenya, for example, was heavily influenced by a Christian Science Monitor article I had forced myself to read 10 years earlier. Sometimes, we call things ‘boring’ simply because they lie outside the box we are currently in.”

If you were to come up with a punchline to a joke about the Monitor, that would probably be it. We’re seen as being global, fair, insightful, and perhaps a bit too earnest. We’re the bran muffin of journalism.

But you know what? We change lives. And I’m going to argue that we change lives precisely because we force open that too-small box that most human beings think they live in.

The Monitor is a peculiar little publication that’s hard for the world to figure out. We’re run by a church, but we’re not only for church members and we’re not about converting people. We’re known as being fair even as the world becomes as polarized as at any time since the newspaper’s founding in 1908.

We have a mission beyond circulation, we want to bridge divides. We’re about kicking down the door of thought everywhere and saying, “You are bigger and more capable than you realize. And we can prove it.”

If you’re looking for bran muffin journalism, you can subscribe to the Monitor for $15. You’ll get the Monitor Weekly magazine, the Monitor Daily email, and unlimited access to CSMonitor.com.

QR Code to Cosmic jack-o'-lantern: NASA discovers giant 'pumpkin stars'
Read this article in
https://www.csmonitor.com/Science/2016/1031/Cosmic-jack-o-lantern-NASA-discovers-giant-pumpkin-stars
QR Code to Subscription page
Start your subscription today
https://www.csmonitor.com/subscribe