Did Tibetans inherit their high-altitude genes from a different species?

Tibetans and Sherpas adapted to high altitudes thanks to genes from an extinct human lineage known as the Denisovans, new research suggests.

|
NASA
The thin air of the Tibetan Plateau, which resides at 2.5 miles (4 kilometers) in altitude, holds just 60 percent of the oxygen found at sea level.

Genetic mutations from an extinct human lineage help Tibetans and Sherpas live at high altitudes, researchers say.

The new findings add to growing evidence that interbreeding with other human lineages provided genetic variations that helped modern humans adapt as they spread across the world.

As modern humans migrated out of Africa, they had to adapt to many new environments. One noteworthy adaptation was of Tibetans adjusting to the thin air of the Tibetan plateau, which at about 2.5 miles (4 kilometers) in altitude has oxygen levels just 60 percent that of air at sea level. For instance, when at high altitudes, women who come from low altitudes usually have problems with childbirth, such as preeclampsia, which is potentially dangerous high blood pressure during pregnancy. [High & Dry: Images of the Himalayas and Tibetan Plateau]

"Tibetans have a really good example of a human adaptation to a new environment," said study co-author Rasmus Nielsen, a population and evolutionary geneticist at the University of California, Berkeley.

Recent studies revealed how Tibetans adapted to high altitudes — a pattern of mutations in the gene EPAS1, which influences levels of hemoglobin, the protein in blood that carries oxygen around the body. Although most people experience a rise in hemoglobin levels at high altitudes, Tibetans only increase their hemoglobin levels a limited amount — too much hemoglobin in the blood can lead to a greater risk of heart disease.

To learn more about human evolution, Nielsen and his colleagues investigated how Tibetans might have developed their adaptation. Frustratingly, the research team's computer models could not at first explain how Tibetans evolved their pattern of EPAS1 mutations as quickly as they apparently did.

Now, the scientists find Tibetans apparently inherited this pattern of mutations, or haplotype, from a recently discovered extinct lineage of humans known as the Denisovans.

"Adapting to a new environment may take a long time, so sometimes it might have been easier for the ancestors of modern humans to pick up helpful mutations from another human lineage adapted to that environment, such as the Denisovans," Nielsen told Live Science. "This raises the possibility that such a process may have happened many, many other times in human evolution."

Although modern humans are the only surviving human lineage, others also once walked the Earth. These included Neanderthals, the closest extinct relatives of modern humans, and the Denisovans, the first evidence of which was discovered in Denisova Cave in southern Siberia in 2008.

Recent analysis of DNA from Denisovan fossils revealed the ancestors of modern humans apparently interbred with Denisovans, whose genetic footprint extended from Siberia to the Pacific Islands of Oceania. About 0.2 percent of DNA of mainland Asians and Native Americans is Denisovan in origin.

The researchers looked for the Tibetan pattern of EPAS1 mutations in 26 different modern human populations across the world, as well as in Neanderthal and Denisovan genomes. They found only Denisovans possessed this haplotype too, as did a small percentage of Han Chinese. This suggests the ancestors of Tibetans inherited this pattern of mutations either from Denisovans or relatives of Denisovans.

The researchers suggest this pattern of mutations might also exist in other Asian populations adapted to high altitudes. These include the Sherpas of Nepal and certain Mongolian populations.

Although some modern human groups in the Pacific Islands possess more Denisovan DNA than Tibetans, those groups do not possess the pattern of EPAS1 mutations seen in Tibetans. "We think modern humans inherited this haplotype from Denisovans a long time ago, but it was of more use to the Tibetans, and so spread among their population," Nielsen said. "In Pacific Islander groups such as Melanesians, this haplotype was probably not as useful, and so was not preserved over time."

The scientists cautioned these findings do not suggest that Tibetans inherited these genes from mythical creatures known as yetis, nor that Denisovans are yetis. "There's already been speculation that Denisovans are yetis on the Internet," Nielsen said.

Nielsen and his colleagues detailed their findings in the July 3 issue of the journal Nature.

Follow Live Science @livescienceFacebook Google+. Original article on Live Science.

Copyright 2014 LiveScience, a TechMediaNetwork company. All rights reserved. This material may not be published, broadcast, rewritten or redistributed.

You've read  of  free articles. Subscribe to continue.
Real news can be honest, hopeful, credible, constructive.
What is the Monitor difference? Tackling the tough headlines – with humanity. Listening to sources – with respect. Seeing the story that others are missing by reporting what so often gets overlooked: the values that connect us. That’s Monitor reporting – news that changes how you see the world.

Dear Reader,

About a year ago, I happened upon this statement about the Monitor in the Harvard Business Review – under the charming heading of “do things that don’t interest you”:

“Many things that end up” being meaningful, writes social scientist Joseph Grenny, “have come from conference workshops, articles, or online videos that began as a chore and ended with an insight. My work in Kenya, for example, was heavily influenced by a Christian Science Monitor article I had forced myself to read 10 years earlier. Sometimes, we call things ‘boring’ simply because they lie outside the box we are currently in.”

If you were to come up with a punchline to a joke about the Monitor, that would probably be it. We’re seen as being global, fair, insightful, and perhaps a bit too earnest. We’re the bran muffin of journalism.

But you know what? We change lives. And I’m going to argue that we change lives precisely because we force open that too-small box that most human beings think they live in.

The Monitor is a peculiar little publication that’s hard for the world to figure out. We’re run by a church, but we’re not only for church members and we’re not about converting people. We’re known as being fair even as the world becomes as polarized as at any time since the newspaper’s founding in 1908.

We have a mission beyond circulation, we want to bridge divides. We’re about kicking down the door of thought everywhere and saying, “You are bigger and more capable than you realize. And we can prove it.”

If you’re looking for bran muffin journalism, you can subscribe to the Monitor for $15. You’ll get the Monitor Weekly magazine, the Monitor Daily email, and unlimited access to CSMonitor.com.

QR Code to Did Tibetans inherit their high-altitude genes from a different species?
Read this article in
https://www.csmonitor.com/Science/2014/0702/Did-Tibetans-inherit-their-high-altitude-genes-from-a-different-species
QR Code to Subscription page
Start your subscription today
https://www.csmonitor.com/subscribe