Subglacial volcanoes melting West Antarctic Ice sheet, say scientists

It's not just climate change that is causing the rapid loss of ice in the West Antarctic; researchers have discovered that geothermal activity is contributing to the melting.

|
NASA photograph by Jim Yungel
The edge of the Thwaites glacier, shown here in an image taken during Operation Icebridge, a NASA-led study of Antarctic and Greenland glaciers. The blue along the glacier front is dense, compressed ice.

Antarctica is a land of ice. But dive below the West Antarctic Ice Sheet, and you'll find fire as well, in the form of subglacial volcanoes.

Now, a new study finds that these subglacial volcanoes and other geothermal "hotspots" are contributing to the melting of Thwaites Glacier, a major river of ice that flows into Antarctica's Pine Island Bay. Areas of the glacier that sit near geologic features thought to be volcanic are melting faster than regions farther away from hotspots, said Dustin Schroeder, the study's lead author and a geophysicist at the University of Texas at Austin.

This melting could significantly affect ice loss in the West Antarctic, an area that is losing ice quickly.

"It's not just the fact that there is melting water, and that water is coming out," Schroeder told Live Science. "It's how that affects the flow and stability of the ice." [Images: See an Antarctic Glacier Calve an Iceberg]

Antarctic heat

Researchers have long known that volcanoes lurk under the ice of West Antarctica. This is a seismically active region, where East and West Antarctica are rifting apart. In 2013, a team of scientists even found a new volcano beneath the West Antarctic Ice Sheet.

West Antarctica is also hemorrhaging ice due to climate change, and recent studies have suggested there is no way to reverse the retreat of West Antarctic glaciers. However, the timing of this retreat is still in question, Schroeder said — it could take hundreds of years, or thousands. It's important to understand which, given that meltwater from the West Antarctic Ice Sheet contributes directly to sea level rise.

Scientists use computer models to try to predict the future of the ice sheet, but their lack of understanding of subglacial geothermal energy has been a glaring gap in these models. Measuring geothermal activity under the ice sheet is so difficult that researchers usually just enter one, uniform estimate for the contributions of geothermal heat to melting, Schroeder said.

Of course, volcanism isn't uniform. Geothermal hotspots no doubt influence melting more in some areas than in others.

"It's the most complex thermal environment you might imagine," study co-author Don Blankenship, a geophysicist at UT Austin, said in a statement. "And then, you plop the most critical dynamically unstable ice sheet on planet Earth in the middle of this thing, and then you try to model it. It's virtually impossible."

Hotspots melting

To unravel the complexity, the researchers built on a previous study they published in 2013 that mapped out the system of channels that flows beneath the Thwaites Glacier, a fast-flowing glacier that scientists say is vulnerable to global warming.

Using data from airborne radar, the researchers were able to figure out where these subglacial streams were too full to be explained by flow from upstream. The swollen streams revealed spots of unusually high melt, Schroeder said. Next, the researchers checked out the subglacial geology in the region and found that fast-melting spots were disproportionately clustered near confirmed West Antarctic volcanoes, suspected volcanoes or other presumed hotspots.

"There's a pattern of hotspots," Schroeder said. "One of them is next to Mount Takahe, which is a volcano that actually sticks out of the ice sheet."

The minimum average heat flow beneath Thwaites Glacier is 114 milliwatts per square meter (or per about 10 square feet) with some areas giving off 200 milliwatts per square meter or more, the researchers report today (June 9) in the journal Proceedings of the National Academy of Sciences. (A milliwatt is one-thousandth of a watt.) In comparison, Schroeder said, the average heat flow of the rest of the continents is 65 milliwatts per square meter.

"It's pretty hot by continental standards," he said.

The extra melt caused by subglacial volcanoes could lubricate the ice sheet from beneath, hastening its flow toward the sea, Schroeder said. To understand how much the volcanic melt contributes to this flow — and what that means for the future of the West Antarctic Ice Sheet — glaciologists and climate scientists will have to include the new, finer-grained findings in their models. Schroeder and his colleagues also plan to expand their study to other glaciers in the region.

"Anywhere in the West Antarctic Ice Sheet is going to be a candidate for high melt areas," he said. "And we have radar data covering much of it."

Editor's Note: This article was updated to reflect the fact that airborne data, not satellite information, was used in the study.

Follow Stephanie Pappas on Twitter and Google+. Follow us @livescience, Facebook & Google+. Original article on Live Science.

Copyright 2014 LiveScience, a TechMediaNetwork company. All rights reserved. This material may not be published, broadcast, rewritten or redistributed.

You've read  of  free articles. Subscribe to continue.
Real news can be honest, hopeful, credible, constructive.
What is the Monitor difference? Tackling the tough headlines – with humanity. Listening to sources – with respect. Seeing the story that others are missing by reporting what so often gets overlooked: the values that connect us. That’s Monitor reporting – news that changes how you see the world.

Dear Reader,

About a year ago, I happened upon this statement about the Monitor in the Harvard Business Review – under the charming heading of “do things that don’t interest you”:

“Many things that end up” being meaningful, writes social scientist Joseph Grenny, “have come from conference workshops, articles, or online videos that began as a chore and ended with an insight. My work in Kenya, for example, was heavily influenced by a Christian Science Monitor article I had forced myself to read 10 years earlier. Sometimes, we call things ‘boring’ simply because they lie outside the box we are currently in.”

If you were to come up with a punchline to a joke about the Monitor, that would probably be it. We’re seen as being global, fair, insightful, and perhaps a bit too earnest. We’re the bran muffin of journalism.

But you know what? We change lives. And I’m going to argue that we change lives precisely because we force open that too-small box that most human beings think they live in.

The Monitor is a peculiar little publication that’s hard for the world to figure out. We’re run by a church, but we’re not only for church members and we’re not about converting people. We’re known as being fair even as the world becomes as polarized as at any time since the newspaper’s founding in 1908.

We have a mission beyond circulation, we want to bridge divides. We’re about kicking down the door of thought everywhere and saying, “You are bigger and more capable than you realize. And we can prove it.”

If you’re looking for bran muffin journalism, you can subscribe to the Monitor for $15. You’ll get the Monitor Weekly magazine, the Monitor Daily email, and unlimited access to CSMonitor.com.

QR Code to Subglacial volcanoes melting West Antarctic Ice sheet, say scientists
Read this article in
https://www.csmonitor.com/Science/2014/0610/Subglacial-volcanoes-melting-West-Antarctic-Ice-sheet-say-scientists
QR Code to Subscription page
Start your subscription today
https://www.csmonitor.com/subscribe