Scientists might have figured out how to make solar power work at night

By attaching photoswitching molecules called azobenzene to a template of carbon nanotubes, scientists have designed a 'solar thermal fuel' that can release heat on demand.

|
Image courtesy of the researchers
A powerful arc lamp is used to simulate sunlight on a sample of photoswitchable molecules, driving structural changes at the molecular level. A portion of the light's energy is stored with each structural change. The progress of these changes can be tracked by monitoring the molecules' optical properties.

The amount of energy generated by the sun in just an hour is more than enough to satisfy power needs of the Earth for an entire year. Harnessing that energy, however, can be a challenge, especially when it's dark out.

But this might change with the discovery of certain kind of photoswitches that not only can store solar energy but also release the heat on demand, day or night.

Designed by researchers from MIT and Harvard, these new photoswitches are described in a paper titled "Templated assembly of photoswitches significantly increases the energy-storage capacity of solar thermal fuels" published in the journal Nature Chemistry.

A photoswitch is a type of molecule that can exist in two different configurations. After absorbing solar energy, the structure of a photoswitch becomes strained. By using a catalyst or by increasing the temperature, these molecules bounce back to their original structure, releasing heat along the way.  

The idea, says Timothy Kucharski, a postdoc at MIT and Harvard, is the paper’s lead author, was to exploit this difference in the two structural forms.

But earlier studies that used photoswitch molecules had shown that the difference in heat between the two forms was not much. The challenge for Dr. Kucharski and his team was to come up with an arrangement where the energy output could be significant.

By attaching photoswitching molecules called azobenzene to a template of carbon nanotubes (CNTs), researchers came up with a "solar thermal fuel" capable of reaching a very high energy density.

"The energy density is 120 kJ/mol, which corresponds to 56 Watt-hours/kg. Thus, conventional gasoline has an energy density that is roughly 230 times larger (~13,000 Wh/kg), and Li-ion batteries have energy densities that are roughly 3 times higher than our material," Kucharski writes in an email. "We should be able to increase our energy density further so that it competes with Li-ion batteries (though we'll still be releasing energy as heat, rather than electricity)." [Editor's note: An earlier version republished a typo in Dr. Kucharski's email that misstated the energy density of gasoline.

The packing density allowed specific interactions between azobenzene molecules on neighboring CNTs and ensured that a high amount of energy could be stored within a given weight or volume of material.

“[I]t’s incredibly hard to get these molecules packed onto a CNT in that kind of close packing,” said Jeffrey C. Grossman an associate professor of materials science and engineering and a co-author on the paper.

In fact, three years ago Grossman and his team had examined this arrangement based on computer simulations. Even though, the team at that time achieved a packing density less than half of what the computer simulations showed, they estimated that even with that model it was possible to reach a high energy output.

This new work is a follow-up to Grossman's previous work and involves engineering the fuel in the lab.

“It could change the game, since it makes the sun’s energy, in the form of heat, storable and distributable,” Dr. Grossman said in a press release. “Now we’re looking at whole new classes of solar thermal materials where you can enhance this interactivity,” he added

You've read  of  free articles. Subscribe to continue.
Real news can be honest, hopeful, credible, constructive.
What is the Monitor difference? Tackling the tough headlines – with humanity. Listening to sources – with respect. Seeing the story that others are missing by reporting what so often gets overlooked: the values that connect us. That’s Monitor reporting – news that changes how you see the world.

Dear Reader,

About a year ago, I happened upon this statement about the Monitor in the Harvard Business Review – under the charming heading of “do things that don’t interest you”:

“Many things that end up” being meaningful, writes social scientist Joseph Grenny, “have come from conference workshops, articles, or online videos that began as a chore and ended with an insight. My work in Kenya, for example, was heavily influenced by a Christian Science Monitor article I had forced myself to read 10 years earlier. Sometimes, we call things ‘boring’ simply because they lie outside the box we are currently in.”

If you were to come up with a punchline to a joke about the Monitor, that would probably be it. We’re seen as being global, fair, insightful, and perhaps a bit too earnest. We’re the bran muffin of journalism.

But you know what? We change lives. And I’m going to argue that we change lives precisely because we force open that too-small box that most human beings think they live in.

The Monitor is a peculiar little publication that’s hard for the world to figure out. We’re run by a church, but we’re not only for church members and we’re not about converting people. We’re known as being fair even as the world becomes as polarized as at any time since the newspaper’s founding in 1908.

We have a mission beyond circulation, we want to bridge divides. We’re about kicking down the door of thought everywhere and saying, “You are bigger and more capable than you realize. And we can prove it.”

If you’re looking for bran muffin journalism, you can subscribe to the Monitor for $15. You’ll get the Monitor Weekly magazine, the Monitor Daily email, and unlimited access to CSMonitor.com.

QR Code to Scientists might have figured out how to make solar power work at night
Read this article in
https://www.csmonitor.com/Science/2014/0416/Scientists-might-have-figured-out-how-to-make-solar-power-work-at-night
QR Code to Subscription page
Start your subscription today
https://www.csmonitor.com/subscribe