After the Large Hadron Collider, an Even Larger Hadron Collider?

If CERN gets its way, its next particle accelerator will be even bigger and more powerful than the behemoth Large Hadron Collider.

|
Martial Trezzini/Keystone/AP/File
Engineers work to assemble one of the layers of the world's largest superconducting solenoid magnet CERN's Large Hadron Collider in Geneva in 2007.

Even though the world's most powerful atom-smasher was completed just six years ago, its makers are already looking ahead to the next one.

CERN, the world's largest particle physics lab, famous for developing the World Wide Web and, more recently, discovering the Higgs boson, wants to build a circular atom smasher with a circumference of 49 to 62 miles  – three or four times the circumference of its record-breaking Large Hadron Collider (LHC) – and collision energy of up to 100 TeV.

The LHC is a ring of superconducting magnets in a 16.5-mile circular tunnel buried 100 meters below the Swiss/French border.

"A worthy successor to the LHC, whose collision energies will reach 14 TeV, such an accelerator would allow particle physicists to push back the boundaries of knowledge even further," CERN announced in a press release.

In the early 1980s, while the Large Electron-Positron (LEP) collider was being designed and built, scientists at CERN were already thinking about the LHC. It took 25 years for the plan to take shape and for LHC to become a reality. The LHC finally started its operations in 2008.

"Even though the LHC programme is already well defined for the next two decades, the time has come to look even further ahead," CERN said in a statement.

“We need to sow the seeds of tomorrow’s technologies today, so that we are ready to take decisions in a few years’ time,” said Frédérick Bordry, CERN’s Director for Accelerators and Technology. 

This collider is part of the Future Circular Colliders (FCC), a five-year international study program that focuses especially on studies for a hadron collider, like the  LHC, capable of reaching collision energies of 100 TeV.

But scientists are keeping their options open. The FCC will run alongside another study of the Compact Linear Collider, or “CLIC” which has been underway for a few years now. The CLIS could be another post-LHC option for CERN.

"The aim of the CLIC study is to investigate the potential of a linear collider based on a novel accelerating technology," CERN said.

In 2012, CERN scientists announced that they had observed particles consistent with the Higgs boson – an elusive particle that could explain how other elementary particles gain their mass. 

Later on, CERN confirmed that the particle observed after experiments at CERN's Large Hadron Collider was a Higgs boson, but "there is still work to do to determine what kind of Higgs boson it is," according to CERN. Scientists at the Fermi National Accelerator Laboratory near Chicago had collected and analyzed data that pointed toward the existence of Higgs boson but experiments at CERN confirmed its existence.

“We still know very little about the Higgs boson, and our search for dark matter and supersymmetry continues. The forthcoming results from the LHC will be crucial in showing us which research paths to follow in the future and what will be the most suitable type of accelerator to answer the new questions that will soon be asked,” said Sergio Bertolucci, Director for Research and Computing at CERN.

You've read  of  free articles. Subscribe to continue.
Real news can be honest, hopeful, credible, constructive.
What is the Monitor difference? Tackling the tough headlines – with humanity. Listening to sources – with respect. Seeing the story that others are missing by reporting what so often gets overlooked: the values that connect us. That’s Monitor reporting – news that changes how you see the world.

Dear Reader,

About a year ago, I happened upon this statement about the Monitor in the Harvard Business Review – under the charming heading of “do things that don’t interest you”:

“Many things that end up” being meaningful, writes social scientist Joseph Grenny, “have come from conference workshops, articles, or online videos that began as a chore and ended with an insight. My work in Kenya, for example, was heavily influenced by a Christian Science Monitor article I had forced myself to read 10 years earlier. Sometimes, we call things ‘boring’ simply because they lie outside the box we are currently in.”

If you were to come up with a punchline to a joke about the Monitor, that would probably be it. We’re seen as being global, fair, insightful, and perhaps a bit too earnest. We’re the bran muffin of journalism.

But you know what? We change lives. And I’m going to argue that we change lives precisely because we force open that too-small box that most human beings think they live in.

The Monitor is a peculiar little publication that’s hard for the world to figure out. We’re run by a church, but we’re not only for church members and we’re not about converting people. We’re known as being fair even as the world becomes as polarized as at any time since the newspaper’s founding in 1908.

We have a mission beyond circulation, we want to bridge divides. We’re about kicking down the door of thought everywhere and saying, “You are bigger and more capable than you realize. And we can prove it.”

If you’re looking for bran muffin journalism, you can subscribe to the Monitor for $15. You’ll get the Monitor Weekly magazine, the Monitor Daily email, and unlimited access to CSMonitor.com.

QR Code to After the Large Hadron Collider, an Even Larger Hadron Collider?
Read this article in
https://www.csmonitor.com/Science/2014/0220/After-the-Large-Hadron-Collider-an-Even-Larger-Hadron-Collider
QR Code to Subscription page
Start your subscription today
https://www.csmonitor.com/subscribe