What makes a pretty pigeon? Scientists identify genes for feather colors.

A new study sheds light on the mutations that control the color variations among rock pigeons. 

|
Eric Domyan from University of Utah
Top row, first three images from left to right, show ash-red color from a mutant form of the Tyrp1 gene, blue-black from a normal Tyrp1 gene, and brown from another Tyrp1 mutant. The fourth photo, upper right, shows a pigeon that is red due to a mutant Sox10 gene. The pigeons in the bottom four images have the same form of the Tyrp1 or Sox10 genes as the corresponding birds in the top row, but their colors are diluted or watered-down because they also have mutant gene named Slc45a2.

The next time you spot a red pigeon, don't worry. It probably wasn't spray-painted. It's in the bird's genes. 

In a paper titled "Epistatic and Combinatorial Effects of Pigmentary Gene Mutations in the Domestic Pigeon" published this week in the journal Current Biology, a group of researchers from University of Utah say they have managed to crack the genetic code behind color variations among pigeons. The researchers identified mutations in three key genes – Tyrp1, Sox10, and Slc45a2 – that determine feather color in domestic rock pigeons.

"We were interested in understanding DNA level changes that give birth to specific traits among pigeons like, color of feathers," Michael Shapiro, associate professor of biology and senior author of the study told the Monitor.

The Tyrp1 gene produces an enzyme responsible for the synthesis of melanin and different forms of this gene that make pigeons blue-black (the grayish color of common city pigeons), ash-red, and brown, Dr. Shapiro said.

And mutations in another gene, named Sox10, make pigeons red irrespective of what other genes do. When Sox10, a recessive gene, mutates, it suppresses the Tyrp1 gene, resulting in a bird with a really rich red color, he adds.

"You drop the baton and the orchestra doesn't play, " he says. "That is exactly what mutation in Sox10 does."

Sox10 is an example of an epistatic gene, one that obscures the effects of another gene.

And different forms of a third gene, named Slc45a2, make the pigeons' colors appear either intense or washed out.

That same gene influences pigmentation of human skin, say scientists. For example, some mutations in Slc45a are associated with certain kinds of albinism.

In humans, mutations of these genes often are considered ‘bad’ because they can cause albinism or make cells more susceptible to UV (ultraviolet sunlight) damage because the protective pigment is absent or low,” said Eric Domyan, a biology postdoctoral fellow at the university and first author of the study. “In pigeons, mutations of these same genes cause different feather colors, and to pigeon hobbyists that is a very good thing.”

"Color is one of the most important traits to breeders − it makes a pretty pigeon,” Shapiro said.

Records indicate that pigeons were domesticated 5,000 years ago, Shapiro says. And pigeon breeders have drawn on their experience and fiddled with pigeons of different colors to produce 350 distinct pigeon breeds, say scientists.

It is still unclear where these mutations came from – if they were already in the wild from the beginning or they came about as pigeons were eventually domesticated, Shapiro adds.

You've read  of  free articles. Subscribe to continue.
Real news can be honest, hopeful, credible, constructive.
What is the Monitor difference? Tackling the tough headlines – with humanity. Listening to sources – with respect. Seeing the story that others are missing by reporting what so often gets overlooked: the values that connect us. That’s Monitor reporting – news that changes how you see the world.

Dear Reader,

About a year ago, I happened upon this statement about the Monitor in the Harvard Business Review – under the charming heading of “do things that don’t interest you”:

“Many things that end up” being meaningful, writes social scientist Joseph Grenny, “have come from conference workshops, articles, or online videos that began as a chore and ended with an insight. My work in Kenya, for example, was heavily influenced by a Christian Science Monitor article I had forced myself to read 10 years earlier. Sometimes, we call things ‘boring’ simply because they lie outside the box we are currently in.”

If you were to come up with a punchline to a joke about the Monitor, that would probably be it. We’re seen as being global, fair, insightful, and perhaps a bit too earnest. We’re the bran muffin of journalism.

But you know what? We change lives. And I’m going to argue that we change lives precisely because we force open that too-small box that most human beings think they live in.

The Monitor is a peculiar little publication that’s hard for the world to figure out. We’re run by a church, but we’re not only for church members and we’re not about converting people. We’re known as being fair even as the world becomes as polarized as at any time since the newspaper’s founding in 1908.

We have a mission beyond circulation, we want to bridge divides. We’re about kicking down the door of thought everywhere and saying, “You are bigger and more capable than you realize. And we can prove it.”

If you’re looking for bran muffin journalism, you can subscribe to the Monitor for $15. You’ll get the Monitor Weekly magazine, the Monitor Daily email, and unlimited access to CSMonitor.com.

QR Code to What makes a pretty pigeon? Scientists identify genes for feather colors.
Read this article in
https://www.csmonitor.com/Science/2014/0207/What-makes-a-pretty-pigeon-Scientists-identify-genes-for-feather-colors
QR Code to Subscription page
Start your subscription today
https://www.csmonitor.com/subscribe