Ancient volcanoes drove half of all species to extinction, study suggests

A new study indicates that massive volcanic activity and the resultant climate change some 200 million years ago were behind the widespread extinction of land and sea species that made way for the rise of dinosaurs. 

|
Paul Olsen/Lamont-Doherty Earth Observatory
In Clifton, New Jersey, a massive lava flow (black rock on left) from the time of the End Triassic is exposed in a former quarry. Reddish sedimentary rocks signaling the extinction itself lie to the far right.

Massive volcanic eruptions may have led to the extermination of half of Earth's species some 200 million years ago, a new study suggests.

The release of gases from giant eruptions caused climate change that led to the End-Triassic Extinction, the widespread loss of land and sea species that made way for the rise of the dinosaurs, the research says. The new study, published today (March 21) in the journal Science, shows that a set of major eruptions spanning from what is now New Jersey to Morocco occurred very close to the time of the extinction.

Scientists suspected previously that such volcanic activity and the resultant climate change were responsible for this major extinction and at least four others. But researchers weren't able to constrain the dates of the eruptions and extinctions well enough to prove the hypothesis. The new study, however, dates the End-Triassic Extinction to 201.56 million years ago, the same time the volcanoes were blowing their tops.

The eruptions, known as the Central Atlantic Magmatic Province, began when the land on Earth was part of one giant supercontinent called Pangaea. They lasted more than 600,000 years and created a rift that became the Atlantic Ocean. The researchers studied lava from these flows in modern-day Nova Scotia, Morocco and New Jersey. [Big Blasts: History's 10 Most Destructive Volcanoes]

The previous dates for these eruptions had error margins of 1 million to 3 million years, but this study decreases those numbers by an order of magnitude, lead author Terrence Blackburn, a geologist at the Carnegie Institution for Science, told LiveScience.

The results showed that the oldest massive eruptions were in Morocco, followed by the ones in Nova Scotia 3,000 years later and then those in New Jersey another 10,000 years after that. Animal and plant fossils, along with pollen and spores from the Triassic era, can be found in sediment layers underneath the lava flows, but not in layers above them. This suggests the eruptions wiped out those species. The organisms that went extinct include eel-like fish called conodonts, early crocodile species, tree lizards and broad-leaved plants.

The evidence heats up

Blackburn and colleagues determined the age of the lavas based on their mineral content. When lava flows cool, the center regions remain hot, and some chemical elements, like the mineral zircon, fail to crystallize. Zircon incorporates large amounts of uranium, which radioactively decays into lead at a specific rate. By measuring the ratio of uranium to lead in lava rock, the scientists could figure out precisely when the eruptions occurred.

"Zircon's really the perfect time capsule,"Blackburn said.

A second piece of evidence supporting the role of volcanism comes from reversals in the Earth's magnetic field. The researchers found mineral grains from one of these reversals in the sediment layer that formed just before the extinction. Since the researchers found the same layers at every site they studied, the magnetic reversal serves as a marker for when the extinction occurred.

A final line of evidence comes from repetitive motions of the Earth. As the planet rotates on its axis, it wobbles around like a top, which causes the amount of energy it receives from the sun to fluctuate depending on the areas that are pointed directly at the sun. These fluctuations correspond to different climate conditions and occur on a regular interval. By using these intervals, the researchers were able to determine the age of fossil-containing sediments to within 20,000 years.

Warming the planet

The gigantic eruptions would have vented sulfates that reflected sunlight back into space, effectively cooling the planet for several thousand years. But the eruptions would also have released large amounts of carbon dioxide and other greenhouse gases, causing global warming. Many species wouldn't have been able to survive this dramatic shift in temperature and would have died out.

The findings are "a nice confirmation of what we and others have been aware of for some time," geologist Paul Renne of the Berkeley Geochronology Center in California, who was not involved in the study, told LiveScience. "The main difference is the dating that they used is more precise than our results were."

Follow Tanya Lewis on Twitter and Google+. Follow us @livescience, Facebook & Google+. Original article on LiveScience.com.

Copyright 2013 LiveScience, a TechMediaNetwork company. All rights reserved. This material may not be published, broadcast, rewritten or redistributed.

You've read  of  free articles. Subscribe to continue.
Real news can be honest, hopeful, credible, constructive.
What is the Monitor difference? Tackling the tough headlines – with humanity. Listening to sources – with respect. Seeing the story that others are missing by reporting what so often gets overlooked: the values that connect us. That’s Monitor reporting – news that changes how you see the world.

Dear Reader,

About a year ago, I happened upon this statement about the Monitor in the Harvard Business Review – under the charming heading of “do things that don’t interest you”:

“Many things that end up” being meaningful, writes social scientist Joseph Grenny, “have come from conference workshops, articles, or online videos that began as a chore and ended with an insight. My work in Kenya, for example, was heavily influenced by a Christian Science Monitor article I had forced myself to read 10 years earlier. Sometimes, we call things ‘boring’ simply because they lie outside the box we are currently in.”

If you were to come up with a punchline to a joke about the Monitor, that would probably be it. We’re seen as being global, fair, insightful, and perhaps a bit too earnest. We’re the bran muffin of journalism.

But you know what? We change lives. And I’m going to argue that we change lives precisely because we force open that too-small box that most human beings think they live in.

The Monitor is a peculiar little publication that’s hard for the world to figure out. We’re run by a church, but we’re not only for church members and we’re not about converting people. We’re known as being fair even as the world becomes as polarized as at any time since the newspaper’s founding in 1908.

We have a mission beyond circulation, we want to bridge divides. We’re about kicking down the door of thought everywhere and saying, “You are bigger and more capable than you realize. And we can prove it.”

If you’re looking for bran muffin journalism, you can subscribe to the Monitor for $15. You’ll get the Monitor Weekly magazine, the Monitor Daily email, and unlimited access to CSMonitor.com.

QR Code to Ancient volcanoes drove half of all species to extinction, study suggests
Read this article in
https://www.csmonitor.com/Science/2013/0321/Ancient-volcanoes-drove-half-of-all-species-to-extinction-study-suggests
QR Code to Subscription page
Start your subscription today
https://www.csmonitor.com/subscribe