Amazing 3-D images show how earthquakes warp the Earth's surface

Laser scans of the Earth's surface published in the journal Science reveal how earthquakes distort the planet's surface, showing exactly where the ground moved and by how much.  

|
Science/AAAS
Earthquake surface ruptures cut and warp the ground in this 3-D rendering of the post-earthquake topographic survey colored by elevation change during the earthquake. Image generated in Crusta (keckcaves.org) with 2.5x vertical exaggeration.

Laser scans of Earth's land surface taken from aircraft have now yielded the most comprehensive before-and-after picture of an earthquake yet, scientists revealed today (Feb. 9).

These kinds of scans before and after large quakes may help reveal where exactly the quakes ruptured the Earth down to a scale of just a few inches, which may help experts prepare for the hazards of such quakes, researchers said.

Scientists from the United States, Mexico and China working with the National Center for Airborne Laser Mapping flew over the area struck by the magnitude-7.2 El Mayor-Cucapah earthquake in northern Mexico on April 4, 2010. The quake produced a 74-mile-long (120 kilometer) rupture through Baja California, Mexico.

This earthquake did not happen on a major fault, like the San Andreas, but ran through a series of smaller faults in the Earth's crust. Over the past century, most of the damaging earthquakes on continents have arisen from such multiple-fault ruptures. [10 Biggest Earthquakes in History]

"We can recognize their activity from how they disrupt the landscape, but we don't have a good way of assessing the potential size of earthquakes they produce, because they tend to rupture together with other, nearby faults in a complicated way," said researcher Michael Oskin, a geologist at the University of California, Davis. "These types of earthquakes can be especially dangerous if they occur near an urban area that is not well prepared."

Before and after

The research team scanned the area with LIDAR, or Light Detection and Ranging, which bounces a stream of laser pulses off the ground. New, airborne LIDAR equipment can measure surface features to within a few inches.

The scientists finished a detailed scan over about 140 square miles (360 square km) in less than three days. With this data they were able to discover and map the several faults, including a previously unknown one. Since the Mexican government scanned this area with LIDAR back in 2006, they were also able to compare the old and new data to identify just how the many faults in the area reacted.

"This gives new insight into how faults link together to produce large earthquakes, and how geologic structures incrementally grow these events — for example, folding of rocks and growth of topography and basins around faults," Oskin told OurAmazingPlanet.

The laser scan revealed warping of the ground surface next to the faults that previously could not easily be detected. For example, it revealed folding above the previously unknown Indiviso fault running beneath agricultural fields in the floodplain of the Colorado River. "This would be very hard to see in the field," Oskin said.

Using a virtual-reality facility at the University of California, Davis, the research team handled and viewed data from the survey to see exactly where the ground moved and by how much.

"We can immerse ourselves into the 3D data set, down to the individual point measurements — all 3.6 billion of them for the post-earthquake data set," Oskin said.

The scans revealed how seven of these small faults came together to cause a major earthquake.

"We can learn so much about how earthquakes work by studying fresh fault ruptures," Oskin said. "In this case, we have learned a great deal about how the rocks surrounding faults deform, which will give us better insight into how faults link together."

Scanning the San Andreas

Airborne LIDAR scans have also been conducted of the San Andreas system and other active faults in the western United States.

"We are already using these data to better document the prehistoric record of activity on these faults," Oskin said. "When an earthquake happens in one of these areas, there will be a new scan conducted and a comparison made. This comparison will be even more revealing than the one we published, because both data sets will be high resolution. In our case, the pre-earthquake data set was relatively low resolution."

Future work can also model the interactions of the various faults that slipped in the 2010 El Mayor-Cucapah earthquake, "to develop better projections of how future, complex multi-fault ruptures may occur," Oskin added.

The scientists detailed their findings in the Feb. 10 issue of the journal Science.

You've read  of  free articles. Subscribe to continue.
Real news can be honest, hopeful, credible, constructive.
What is the Monitor difference? Tackling the tough headlines – with humanity. Listening to sources – with respect. Seeing the story that others are missing by reporting what so often gets overlooked: the values that connect us. That’s Monitor reporting – news that changes how you see the world.

Dear Reader,

About a year ago, I happened upon this statement about the Monitor in the Harvard Business Review – under the charming heading of “do things that don’t interest you”:

“Many things that end up” being meaningful, writes social scientist Joseph Grenny, “have come from conference workshops, articles, or online videos that began as a chore and ended with an insight. My work in Kenya, for example, was heavily influenced by a Christian Science Monitor article I had forced myself to read 10 years earlier. Sometimes, we call things ‘boring’ simply because they lie outside the box we are currently in.”

If you were to come up with a punchline to a joke about the Monitor, that would probably be it. We’re seen as being global, fair, insightful, and perhaps a bit too earnest. We’re the bran muffin of journalism.

But you know what? We change lives. And I’m going to argue that we change lives precisely because we force open that too-small box that most human beings think they live in.

The Monitor is a peculiar little publication that’s hard for the world to figure out. We’re run by a church, but we’re not only for church members and we’re not about converting people. We’re known as being fair even as the world becomes as polarized as at any time since the newspaper’s founding in 1908.

We have a mission beyond circulation, we want to bridge divides. We’re about kicking down the door of thought everywhere and saying, “You are bigger and more capable than you realize. And we can prove it.”

If you’re looking for bran muffin journalism, you can subscribe to the Monitor for $15. You’ll get the Monitor Weekly magazine, the Monitor Daily email, and unlimited access to CSMonitor.com.

QR Code to Amazing 3-D images show how earthquakes warp the Earth's surface
Read this article in
https://www.csmonitor.com/Science/2012/0209/Amazing-3-D-images-show-how-earthquakes-warp-the-Earth-s-surface
QR Code to Subscription page
Start your subscription today
https://www.csmonitor.com/subscribe